Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas.

نویسندگان

  • Genglin Jin
  • Zachary J Reitman
  • Christopher G Duncan
  • Ivan Spasojevic
  • David M Gooden
  • B Ahmed Rasheed
  • Rui Yang
  • Giselle Y Lopez
  • Yiping He
  • Roger E McLendon
  • Darell D Bigner
  • Hai Yan
چکیده

Point mutations at Arg132 of the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) occur frequently in gliomas and result in a gain of function to produce the "oncometabolite" D-2-hydroxyglutarate (D-2HG). The mutated IDH1 allele is usually associated with a wild-type IDH1 allele (heterozygous) in cancer. Here, we identify 2 gliomas that underwent loss of the wild-type IDH1 allele but retained the mutant IDH1 allele following tumor progression from World Health Organization (WHO) grade III anaplastic astrocytomas to WHO grade IV glioblastomas. Intratumoral D-2HG was 14-fold lower in the glioblastomas lacking wild-type IDH1 than in glioblastomas with heterozygous IDH1 mutations. To characterize the contribution of wild-type IDH1 to cancer cell D-2HG production, we established an IDH1-mutated astrocytoma (IMA) cell line from a WHO grade III anaplastic astrocytoma. Disruption of the wild-type IDH1 allele in IMA cells by gene targeting resulted in an 87-fold decrease in cellular D-2HG levels, showing that both wild-type and mutant IDH1 alleles are required for D-2HG production in glioma cells. Expression of wild-type IDH1 was also critical for mutant IDH1-associated D-2HG production in the colorectal cancer cell line HCT116. These insights may aid in the development of therapeutic strategies to target IDH1-mutated cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma.

Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation...

متن کامل

D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma

BACKGROUND IDH mutations frequently occur in diffuse gliomas and result in a neo-enzymatic activity that results in reduction of α-ketoglutarate to D-2-hydroxyglutarate. In gliomas, the frequency of IDH1 mutations in codon 132 increases in the order R132L-R132S-R132G-R132C-R132H with R132H constituting more than 90% of all IDH1 mutations. RESULTS We determined the levels of D-2-hydroxyglutara...

متن کامل

The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas

BACKGROUND Mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are frequent in low-grade gliomas and secondary glioblastomas (sGBM). Because they yield the same oncometabolite, D-2-hydroxyglutarate, they are often treated as equivalent and pooled. The objective of this study was to provide insight into the differences between IDH1 and IDH2 mutant gliomas. METH...

متن کامل

IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma.

Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tu...

متن کامل

Metabolic Reprogramming in Mutant IDH1 Glioma Cells

BACKGROUND Mutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 2013